Software Engineer Colin Lam discusses his new research paper

Chelsea Larkin

About Colin

Colin Lam is a software engineer at Tiliter in the Devices team. Colin has an interesting background, and even more interesting side projects. Recently, Colin worked on a research paper about new tech to track a person’s fatigue – we sat down with him to hear all about it.  

We asked Colin about his role at Tiliter, and what makes his skillset unique:

“In my day-to-day at Tiliter, I work on both software and hardware in the Devices team – everything from software for inference, to hardware that ensures everything talks to each other. My background is in electrical engineering, specialising in digital signal processing, and my role at Tiliter is the perfect combination of those interests – working with CV algorithms in the IT space.”

At Tiliter, we love to know what motivates our team members to come to work. Colin shares:

“There’s always a challenge to be solved. We are always trying to push the boundaries on what no one has done before. There are new challenges that you don’t see anywhere else: something worth looking at, something worth trying out, something worth solving.”

“There are new challenges that you don’t see anywhere else: something worth looking at, something worth trying out, something worth solving.” Colin Lam

We asked Colin about an achievement he’s proud of at work:

“Less than the big projects, I’m actually more proud of the small minor victories. It’s the little problems that are blocking progress which you can resolve and then move on that keep me going.”

Tell us about your research paper Colin!

“Along with my co-authors – Julien Epps and Siyuan Chen – we wrote a paper called “Wearable Fatigue Detection Using Blink-Saccade Synchronisation”. The purpose was to detect how tired a person is by eye activity. There’s been a lot of research into how blinking predicts fatigue, and also into how saccades (rapid eye movements) predict fatigue, but our paper is one of the first to blend these two areas and study their synchronisation. This can help us can develop more accurate technology to predict how tired someone is. The end goal is to develop this into wearable tech which could have significant benefits for reducing accidents on the road.

Our main finding was that blink saccade synchronisation works very effectively as a predictor and is superior to blinks or saccades alone.”

We asked Colin whether there were any similarities between his research and Tiliter:

“The research we conducted doesn’t have much machine learning, but just gleans the data through a man-made algorithm. You could say it’s manual. However, with Tiliter’s computer vision we can pass information into the AI’s deep learning model. There is some similarity in the area of pre-processing – both algorithms undertake background subtraction before pushing information into the model.”

What’s next for Colin:

“I’m really looking forward to 2022. There’s a lot of new implementations coming alongside a large order, requiring lots of change to allow us to deploy at scale. It means a transformation of the way we do things.”

--  

Start your journey:

Check out our engineering opportunities here.

Subscribe To Our Newsletter

Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

See our Privacy Policy, Terms and Conditions and GDPR information.

Tags:

Chelsea is a content writer at Tiliter who’s grown up in tech. Her specialities include UX writing, technical writing, AI conversational writing, and anything else cool that the word “writing” can go behind.

Chelsea is a content writer at Tiliter who’s grown up in tech. Her specialities include UX writing, technical writing, AI conversational writing, and anything else cool that the word “writing” can go behind.

Chelsea Larkin

Related Products

Tiliter computer vision products help reduce shrinkage and fraud.